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1.  INTRODUCTION

It is now clear that persistent shifts in climate are
altering the structure and function of ecosystems
worldwide (Walther et al. 2002, Parmesan & Yohe
2003, Root et al. 2003). Despite their astounding taxo-
nomic diversity, many birds share several life-history
traits that have made them instrumental for evaluating
the consequences of changing climate: they are widely
distributed, highly mobile, their annual cycles hinge
on seasonal phenological cues, and they have rela-

tively short generation times. Among the most promi-
nent examples of such research are studies measuring
bird responses to rising temperatures along migratory
routes or on temperate breeding areas. Coincident
with warming temperatures, many species in both
Europe and North America have advanced their
breeding ground arrival dates (Cotton 2003, Murphy-
Klassen et al. 2005), begun breeding earlier (Crick et
al. 1997, Dunn & Winkler 1999), and extended their
ranges poleward (Thomas & Lennon 1999, Hitch &
Leberg 2007). In other species, arrival times at breed-
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ing areas have remained unchanged as temperatures
have increased (Mills 2005), or have not advanced
enough to remain in synchrony with changes in
resource phenology at lower trophic levels (Both &
Visser 2001). The direction and magnitude of pheno-
logical shifts have also been shown to vary across the
breeding range for the same species (Both et al. 2004,
Both & te Marvelde 2007, this issue). This heterogene-
ity in response among species and regions suggests
that temperature on breeding areas is not the only fac-
tor altering annual life cycle events of migratory birds.
Trends toward earlier arrival and breeding time also
could be caused by changes in departure schedules
from the wintering grounds, or by changes in the pace
of migration. For the latter there is considerable correl-
ative data (Forchhammer et al. 2002, Marra et al. 2005,
Hüppop & Winkel 2006), but whether departure dates
from winter quarters are affected by climatic variables
is largely unknown.

Substantial evidence suggests that rainfall during
the nonbreeding season can have important conse-
quences for migratory birds. Rainfall and temperature
on the nonbreeding quarters in Africa have been
shown to influence abundance, first arrival dates, and
annual survival at breeding areas in Europe (Møller
1989, Kanyamibwa et al. 1990, Peach et al. 1991, Szép
1995, Barbraud et al. 1999, Gordo et al. 2005). Indices
of global climate cycles (e.g. El Niño Southern Oscilla-
tion, ENSO), which correlate well with temporal rain-
fall dynamics, have also been linked to the annual sur-
vival of migratory birds wintering in the Caribbean
(Sillett et al. 2000) and the breeding ground arrival
schedules of birds spending the nonbreeding period in
Africa (Cotton 2003). Recent advances in the applica-
tion of remote sensing using the normalized difference
vegetation index (NDVI) have broadened the scale
and level of resolution with which ecological responses
to precipitation can be examined (Pettorelli et al.
2005). Consistent with previous research, these studies
find tight associations between NDVI data and breed-
ing ground arrival time (Saino et al. 2004), annual sur-
vival (Szép & Møller 2005), and the onset of breeding
(Both et al. 2006).

Rainfall patterns stemming from broad-scale climate
cycles can have direct and indirect effects on plant
productivity (Oba et al. 2001, Nemani et al. 2003),
insect abundance (Polis et al. 1997), and food plant
quality for phytophagous insects (Huberty & Denno
2004), all of which may determine food availability for
migratory birds. Multiple lines of evidence suggest
that food is a key limiting factor for migratory birds
during the nonbreeding period, particularly during the
late-winter dry season (Sherry et al. 2005, Brown &
Sherry 2006, Johnson et al. 2006). Late-winter dry
seasons are commonplace in sub-equatorial regions

and have been linked to seasonal declines in arthropod
populations in tropical deciduous forests through both
observations and experiments (Janzen 1973, Wolda &
Wright 1992, Lefebvre et al. 1994, Parrish & Sherry
1994). The late-winter dry season in many tropical
locations is a critical time for migrants because of pre-
migratory fattening (Brown & Sherry 2006), molt in
some species (van den Brink et al. 2000), and the need
to arrive at breeding areas in optimal condition and as
early as possible (Marra et al. 1998, Norris et al. 2004).
To date, few studies have examined how rain and
food on nonbreeding quarters interact to affect the
physical condition and performance of migratory birds
(Brown & Sherry 2006). Consequently, it is unclear
how annual variation in nonbreeding season rainfall is
likely to influence the timing of departure on spring
migration.

Research on wintering populations of American red-
starts Setophaga ruticilla in wet, mangrove forest and
dry, second-growth scrub illustrates a tight linkage
between moisture and bird performance. By the end of
the winter dry season in Jamaica, the availability of
arthropods consumed as prey is lower in second-
growth scrub than in mangrove forest (Studds & Marra
2005). This difference in food availability appears to
affect multiple measures of redstart performance. Rel-
ative to redstarts occupying mangrove forest, birds in
dry scrub have elevated corticosterone levels (Marra &
Holberton 1998), lose mass over winter (Marra &
Holmes 2001), depart later on spring migration (Marra
et al. 1998, Studds & Marra 2005), and have lower
annual survival (Johnson et al. 2006). Redstarts occu-
pying dry winter habitats also arrive later at breeding
areas, may be in poor physical condition upon arrival,
and fledge fewer young compared to birds originating
from wet locales (Marra et al. 1998, Norris et al. 2004).
Moisture gradients across these habitats, therefore,
appear to drive food availability and, ultimately, the
performance of American redstarts throughout their
annual cycle. However, we have not, until now, exam-
ined how the habitat-specific performance of redstarts
changes in response to annual variation in rainfall.

We tested the hypothesis that changes in rainfall
across years can drive spatio-temporal variation in the
nonbreeding season performance of American redstarts
(Fig. 1). We predicted that differences in rainfall among
years would lead to parallel variation in the abundance
of arthropods available as prey, redstart physical condi-
tion, and the timing of departure on spring migration.
Because mangrove forest retains standing water, we also
predicted that birds in this habitat would be buffered
from annual fluctuations in rainfall and food availability,
allowing them to maintain superior physical condition
and to depart earlier on spring migration relative to
redstarts in second-growth scrub.
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2.  MATERIALS AND METHODS

We conducted this research at the Font Hill Nature
Preserve (18° 02’ N, 77° 57’ W, <5 m above sea level),
about 13 km west of Black River, St. Elizabeth Parish,
Jamaica. This area is one of the driest in Jamaica
(<1000 mm of rain per year), and, as is typical of many
tropical regions, experiences strong seasonality in
precipitation. Rainfall is high from August through
November, when average monthly rainfall typically
exceeds 100 mm, and then usually declines to <25 mm
mo–1 during the dry season from January through
March (Jamaica Meteorological Service unpubl. data).

American redstarts were studied in 2 habitat types:
wet, mangrove forest and dry, second-growth scrub.
Mangrove forest was dominated by black mangrove
Avicennia germinans, but also had some white Lan-
guncularia recemosa and red mangrove Rhizophora
mangle. Trees in this habitat ranged from 8 to >75 cm
diameter at breast height (dbh), were regularly distrib-
uted at intervals of 10 to 15 m, and had dense canopies
averaging about 12 m in height. Mangrove stands
were usually inundated with 0.5 to 1.0 m of standing
water through January, but became progressively
drier in February and March, drying out entirely in
some years. Despite annual variation in surface water,
mangrove trees retained the majority of their leaves
during the dry season, keeping this habitat relatively
cool and shady throughout the time when redstarts
were present. Vegetation in second-growth scrub was
dominated by logwood trees Haematoxylon campechi-
anum, a thorny species with a fluted trunk, but also
contained several less common species, including
Bursera simarubra, Terminalia latifolia, and Crescentia
alata. Trees in this habitat were generally 2 to 8 cm
dbh, grew from 3 to 10 m in height, and were inter-
spersed with small, grassy fields and dense tangles of

vines and shrubs. Unlike mangrove habitat, second-
growth scrub never had standing water, and trees and
other vegetation dropped most of their leaves during
the dry season. Further description of the study area
can be found in Marra & Holmes (2001).

In spring (15 March to 15 April) of 2002 to 2005, red-
starts were captured in mist nets, aged and sexed
using criteria from Pyle (1997) and Marra et al. (1993),
fitted with a unique color scheme of plastic leg bands
and USFWS aluminum bands, measured for body size,
weighed to the nearest 0.1 g, and released. Redstart
mass during this period reflects physical condition at
the end of the late-winter dry season, when birds typi-
cally carry little or no visible subcutaneous fat. To de-
lineate territory boundaries, we followed and mapped
color-banded birds for a minimum of 3 h spread across
at least 1 mo. From 1 April to 15 May of each year, we
resighted color-banded birds at 3 d intervals to deter-
mine their timing of departure on spring migration.
When observers failed to resight a bird, its territory
was visited twice more during that 3 d period, and then
once again in the next 3 d period using a song-chip
playback to confirm departure. To minimize the effect
of time dependency of bird sampling, we captured red-
starts in mangrove and scrub habitats on alternating
days and monitored a roughly equal number of territo-
ries in each habitat during each 3 d interval of the
spring departure period.

Arthropods available as redstart prey were mea-
sured in both habitats within 2 wk of bird capture on a
subset of territories. One observer made 20 passes of a
sweep net over green vegetation while walking a cir-
cular route through the territory. The sweep net was
fastened to a 5 m extension pole, allowing arthropods
to be sampled from within the foraging height range of
redstarts. The contents of the sweep net were over-
turned into a plastic bag and placed overnight in a
freezer (–10°C), preserved in 70% ethanol, and later
dried at 50°C for 24 h. All arthropods >2 mm in length
that are typically found in regurgitation and fecal
samples (Sherry & Holmes 1997) were then weighed
(±0.1 mg) to yield a single measure of food availability
at each territory.

Trends in January through March rainfall from 1995
to 2005 were analyzed with Pearson’s correlation. We
developed an estimate of redstart body mass corrected
for the body size of each bird by first reducing data on
unflattened wing chord, tarsus size, and tail length
onto a single axis using principal components analysis
(PCA). We then regressed body mass on the standard-
ized factor scores from the PCA and used the residual
values as an estimate of corrected body mass. Data on
corrected body mass and arthropod biomass were
examined using a general linear model (GLM) that
included age, sex, and habitat occupancy as fixed
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effects, total rainfall from January through March of
each year as a linear covariate, and all 2-way inter-
actions between demographic groups and environ-
mental variables. We also included the day of the year
of capture as a covariate in the analysis of corrected
body mass to adjust for potential variation in redstart
mass across the 1 mo capture period. The relationship
between corrected body mass and spring departure
dates was evaluated with ordinary least-squares re-
gression. We did not analyze spring departure sched-
ules from 2002 because birds were not monitored for
the entire departure period in this year. All data met
the assumptions of parametric tests, so no transforma-
tions were necessary. Analyses were done with SAS
8.2 (SAS Institute 1999).

3.  RESULTS

From 1995 to 2005, dry-season rainfall (January
through March) decreased by approximately 17%
(r = 0.64, n = 11, p = 0.03; Fig. 2). The timing of precip-
itation also became more variable through time, as
indicated by the increasing coefficient of variation for
rainfall within the dry season of each year (r = 0.65, n =
11, p = 0.03). The increasing unpredictability of dry
season precipitation is particularly evident in recent
years. For example, in 2004, 185 mm of rain fell across
the entire dry season, of which 108 mm came in March
(Fig. 2), making this the second wettest spring since
1995. In contrast, 2005 was one of the driest years on
record in Jamaica, with only 3 mm of rain in March.

During the dry seasons of 2002 to 2005, the biomass
of arthropods available as prey to American redstarts
was greater in years of high rainfall in both mangrove
forest and second-growth scrub (GLM for Rainfall:
F1,51 = 4.96, p = 0.03; for Rainfall × Habitat: F1,51 = 2.00,
p = 0.16; Fig. 3). On average, redstarts in mangrove
had higher arthropod biomass on their territories com-
pared to those in scrub (GLM for Habitat: F1,51 = 15.75,
p = 0.0002; Fig. 3). The variation in food availability
between habitats was pronounced in 3 out of 4 yr
(2002: 20.9 ± 2.8 mg in mangrove, 2.6 ± 3.0 mg in scrub;
means ± SE; 2003: 18.1 ± 3.0 mg in mangrove, 4.1 ±
2.6 mg in scrub; 2005: 12.5 ± 1.9 mg in mangrove, 4.4 ±
2.4 mg in scrub). However, in the extremely wet spring
of 2004 (Fig. 2), arthropod biomass in scrub was
roughly equal to that in mangrove (18.2 ± 1.9 mg in
mangrove, 18.8 ± 3.1 mg in scrub). These spatio-tem-
poral differences in food availability held for all age
and sex classes (GLM for Age: F1,51 = 1.33, p = 0.25; for
Age × Rainfall: F1,51 = 0.00, p = 0.96; for Age × Habitat:
F1,51 = 1.74, p = 0.19; for Sex: F1,51 = 0.21, p = 0.65; for
Sex × Rainfall: F1,51 = 0.05, p = 0.82; for Sex × Habitat:
F1,51 = 0.08, p = 0.78).

When corrected for their body size, the spring body
mass of redstarts was higher in years of greater rain-
fall, an effect that was similar between habitats (GLM
for Rainfall: F1,214 = 20.80, p < 0.0001; for Rainfall ×
Habitat: F1,214 = 1.20, p = 0.27; Fig. 4). Birds overwin-
tering in mangrove forest had higher corrected mass
compared to those in second-growth scrub in all 4 yr
(GLM for Habitat: F1,214 = 9.73, p = 0.002; Fig. 4). These
patterns of corrected body mass were not dependent
on the date individual birds were captured (GLM for
Capture Date: F1,214 = 2.06, p = 0.15) and were con-
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sistent for all age and sex classes (GLM for Age: F1,214

= 1.10, p = 0.30; for Age × Rainfall: F1,214 = 0.01, p =
0.93; for Age × Habitat: F1,214 = 1.50, p = 0.22; for Sex:
F1,214 = 1.06, p = 0.31; for Sex × Rainfall: F1,214 = 0.07,
p = 0.79; for Sex × Habitat: F1,214 = 0.19, p = 0.66).

In 2003 and 2005, redstarts with higher corrected
body mass departed earlier on spring migration com-
pared to birds with lower mass (2003: r2 = 0.17, p =
0.02, n = 35; 2005: r2 = 0.15, p = 0.03, n = 30; Fig. 5A,C).
In these years, birds in mangrove forest left on migra-
tion before those in second-growth scrub (Kaplan-
Meier log rank test for 2003: χ2 = 7.55, p = 0.006, n = 35;
29 ± 1 d since 1 April for mangrove; 36 ± 1 d since 1
April for scrub; mean ± SE; for 2005: χ2 = 3.85, p = 0.04,
n = 30; 32 ± 2 d since 1 April for mangrove; 38 ± 2 d
since 1 April for scrub). In contrast, corrected mass in
2004 was not a good predictor of spring departure
schedules (2004: r2 = 0.01, p = 0.43, n = 47; Fig. 5B), and
there was no difference in the timing of departure
between habitats (Kaplan-Meier log rank test for 2004:
χ2 = 0.86, p = 0.35, n = 47; 30 ± 1 d since 1 April for man-
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grove; 30 ± 2 d since 1 April for scrub). When depar-
ture schedules from all 3 yr were considered together,
the average corrected body mass of all redstarts in
each habitat was highly negatively correlated with the
average date of departure on spring migration. (r2 =
0.86, p = 0.001, n = 6; Fig. 5D).

4.  DISCUSSION

Previous research has demonstrated that nonbreed-
ing season rainfall can have important consequences
for the phenology of migration and the timing of repro-
duction in migratory birds (Saino et al. 2004, 2007, this
issue, Gordo et al. 2005, Both et al. 2006). Such findings
have led to the hypothesis that rainfall mediates the
timing of departure on spring migration by influencing
food availability for birds during the critical period
of pre-migratory fueling (Forchhammer et al. 2002,
Gordo et al. 2005). This idea has remained largely
untested because few studies have directly measured
rain-induced shifts in food supply and their conse-
quences for nonbreeding season performance (Brown
& Sherry 2006). Our results indicate that annual shifts
in nonbreeding season rainfall influence food avail-
ability for American redstarts during the late-winter
dry season, leading to marked differences in physical
condition prior to migration, and, ultimately, to varia-
tion in spring departure schedules among years. Food
availability for redstarts changed not only with annual
variation in rainfall, but also with spatial differences in
habitat moisture. In 3 out of 4 yr, food availability for
birds in mangrove was higher, enabling them to main-
tain superior physical condition and depart earlier on
migration compared to birds in scrub.

The within-year relationships between spring body
mass and the timing of departure on migration illus-
trate how temporal trends in rainfall and spatial gradi-
ents in habitat moisture can interact to shape spring
departure schedules. In both 2003 and 2005, the body
mass of individual redstarts at the end of the dry
season accurately predicted their migratory departure
dates. Although total dry-season rainfall in 2003 was
over 3 times that in 2005, rainfall in March of both
years was <20 mm. In these years, low March rainfall
likely contributed to the marked differences in food
availability between mangrove and scrub habitats,
helping to drive the between-habitat variation in body
mass and its influence on spring departure schedules.
In contrast, although total dry-season rainfall in 2003
and 2004 differed by <50 mm, over 100 mm of rainfall
occurred in March 2004. Food availability in second-
growth scrub and the body mass of birds in this habitat
were higher following this rain pulse than at any other
time during the study. Although redstart body mass in

mangrove remained higher compared to birds in
scrub, departure schedules in 2004 did not differ
between habitats, and the relationship between body
mass and the timing of departure was negligible.
These results indicate that the timing of rainfall within
the dry season, not just the absolute amount, may be
critical for orchestrating migratory departure sched-
ules of birds in drought-prone environments.

The quality of nonbreeding habitat can have impor-
tant implications for the future reproductive success of
migratory birds. Individuals wintering in high-quality
habitats may arrive earlier at breeding sites and be in
better physical condition compared to later arrivals
(Marra et al. 1998, Gill et al. 2001). Delays in arrival of
only a few days can reduce reproductive output by lim-
iting the time available to replace failed clutches (Nor-
ris et al. 2004) or by preventing access to high-quality
breeding habitat (Gunnarsson et al. 2006). The strong
correlation we detected between the average body
mass of redstarts at the end of the winter dry season
and their average departure schedules in each year
implies that the intensity of such carry-over effects
could vary through time at individual nonbreeding
sites or across spatial gradients in moisture at local and
potentially regional scales. Because females predomi-
nate in dry, second-growth scrub (Marra & Holmes
2001), carry-over effects following dry springs are
likely to be more severe for this sex. Variation in non-
breeding season rainfall could also be of particular
concern for species with small populations or restricted
winter distributions, especially if drought-induced
carry-over effects exacerbate other limiting factors
on breeding areas.

Knowledge of the factors that shape the timing of
departure from nonbreeding quarters may also be
important for predicting how changing climate could
alter the phenology of spring migration. When consid-
ered in the context of long-term trends in winter rain-
fall, our results suggest that conditions experienced
by redstarts during their nonbreeding season could
constrain adaptive responses to selection for earlier
breeding that may result from rising temperatures on
breeding areas. Over the past 11 yr, rainfall at our
Jamaican study sites has declined by approximately
17%. Moreover, consensus predictions from multiple
models project drastic declines in rainfall throughout
the Caribbean over the next 50 yr (Neelin et al. 2006).
Because food availability appears dependent on rain-
fall, birds may face increasingly greater food limita-
tion during the critical period of pre-migratory fuel-
ing, leading to progressively greater delays in the
timing of departure on spring migration. Under this
scenario, redstarts would be unable to respond to
selection for earlier breeding by advancing their
spring departure dates. Selection pressures imposed
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by extreme drought on nonbreeding areas could also
compound the ability of some birds to complete their
migration successfully. Preliminary data for redstarts
indicate that the annual survival of large-bodied birds
is low following severe winter dry seasons, and that
small-bodied survivors migrate shorter distances to
breeding areas, based on stable-hydrogen isotopes in
feathers molted following reproduction (authors’ un-
publ. data). Because dry-season rainfall in Jamaica is
also becoming increasingly variable, such pressures
could lead to annually shifting adaptive peaks for
body size rather than to sustained directional selec-
tion (Grant & Grant 1989). How changing climate dur-
ing the nonbreeding period might act on other targets
of selection that could influence migration merits
further study.

Further insights into the numerous potential re-
sponses migratory birds could display to changing cli-
mate during the nonbreeding season will require
additional observational studies coupled with experi-
ments. At present, the role of food as a limiting
factor for nonbreeding season migratory birds in the
Caribbean is known for only a handful of species.
Food supplementation experiments with ovenbirds
Seiurus aurocapilla (Brown & Sherry 2006) and indi-
vidual upgrade experiments with redstarts (Studds &
Marra 2005) clearly isolate the role of food and mois-
ture as key limiting factors for birds during the late-
winter dry season. Needed are long-term observa-
tional data and similar experimental approaches for
Palearctic migrants while on their African and Asian
nonbreeding grounds. Also needed are common gar-
den and captive breeding experiments designed to
clarify the relative role of genetic versus environmen-
tal controls on spring departure schedules. The latter
will be particularly important for understanding how
phenotypic plasticity and microevolutionary change
could interact to shape spring migration schedules
under changing environmental conditions (Pulido
2007, this issue).

Despite recent progress, our understanding of how
climate during the nonbreeding season acts to affect
individual condition, demography, and abundance
of migratory passerines remains poor. Additional
research during the nonbreeding period will help to
develop a more synthetic view of how ongoing
changes in climate in different phases of the annual
cycle interact to influence year-round population pro-
cesses in long-distance migratory birds. Such knowl-
edge is critical to our understanding of population
regulation (Sæther et al. 2004), to the development of
models that predict population dynamics of migratory
birds (Dolman & Sutherland 1994, Runge & Marra
2005), and to population management (Almaraz &
Amat 2004).
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